Method for optimizing the correction of the eye's higher-order aberrations in the presence of decentrations.

نویسندگان

  • Antonio Guirao
  • Ian G Cox
  • David R Williams
چکیده

The use of a correcting element to compensate for higher-order aberrations in an optical system often requires accurate alignment of the correcting element. This is not always possible, as in the case of a contact lens on the eye. We propose a method consisting of partial correction of every aberration term to minimize the average variance of the residual wave-front aberration produced by Gaussian decentrations (translations and rotations). Analytical expressions to estimate the fraction of every aberration term that should be corrected for a given amount of decentration are derived. To demonstrate the application of this method, three examples are used to compare performance with total and with partial correction. The partial correction is more robust and always yields some benefit regardless of the amount of decentration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of rotation and translation on the expected benefit of an ideal method to correct the eye's higher-order aberrations.

An ideal correcting method, such as a customized contact lens, laser refractive surgery, or adaptive optics, that corrects higher-order aberrations as well as defocus and astigmatism could improve vision. The benefit achieved with this ideal method will be limited by decentration. To estimate the significance of this potential limitation we studied the effect on image quality expected when an i...

متن کامل

Improvement in retinal image quality with dynamic correction of the eye's aberrations.

We measured the improvement in retinal image quality provided by correcting the temporal variation in the eye's wave aberration with a closed-loop adaptive optics system. This system samples the eye's wave aberration at rates up to 30 Hz. Correction of the eye's aberrations can be completed in 0.25-0.5 seconds, resulting in residual rms wave-front errors as low as 0.1 microns for 6.8 mm pupils....

متن کامل

Neural compensation for the eye's optical aberrations.

A fundamental problem facing sensory systems is to recover useful information about the external world from signals that are corrupted by the sensory process itself. Retinal images in the human eye are affected by optical aberrations that cannot be corrected with ordinary spectacles or contact lenses, and the specific pattern of these aberrations is different in every eye. Though these aberrati...

متن کامل

Human eyes do not need monochromatic aberrations for dynamic accommodation

PURPOSE To determine if human accommodation uses the eye's own monochromatic aberrations to track dynamic accommodative stimuli. METHODS Wavefront aberrations were measured while subjects monocularly viewed a monochromatic Maltese cross moving sinusoidally around 2D of accommodative demand with 1D amplitude at 0.2 Hz. The amplitude and phase (delay) of the accommodation response were compared...

متن کامل

Visual performance after correcting the monochromatic and chromatic aberrations of the eye.

The development of technology to measure and correct the eye's higher-order aberrations, i.e., those beyond defocus and astigmatism, raises the issue of how much visual benefit can be obtained by providing such correction. We demonstrate improvements in contrast sensitivity and visual acuity in white light and in monochromatic light when adaptive optics corrects the eye's higher-order monochrom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the Optical Society of America. A, Optics, image science, and vision

دوره 19 1  شماره 

صفحات  -

تاریخ انتشار 2002